Bi-Lipschitz decomposition of Lipschitz functions into a metric space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-Lipschitz Decomposition of Lipschitz functions into a Metric space

We prove a quantitative version of the following statement. Given a Lipschitz function f from the k-dimensional unit cube into a general metric space, one can be decomposed f into a finite number of BiLipschitz functions f |Fi so that the k-Hausdorff content of f([0, 1] r ∪Fi) is small. We thus generalize a theorem of P. Jones [Jon88] from the setting of R to the setting of a general metric spa...

متن کامل

The Near-Ring of Lipschitz Functions on a Metric Space

This paper treats near-rings of zero-preserving Lipschitz functions on metric spaces that are also abelian groups, using pointwise addition of functions as addition and composition of functions as multiplication. We identify a condition on the metric ensuring that the set of all such Lipschitz functions is a near-ring, and we investigate the complications that arise from the lack of left distri...

متن کامل

Bi-Lipschitz Mappings and Quasinearly Subharmonic Functions

After considering a variant of the generalized mean value inequality of quasinearly subharmonic functions, we consider certain invariance properties of quasinearly subharmonic functions. Kojić has shown that in the plane case both the class of quasinearly subharmonic functions and the class of regularly oscillating functions are invariant under conformal mappings. We give partial generalization...

متن کامل

Spaces of Lipschitz Functions on Metric Spaces

In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.

متن کامل

Infinitesimally Lipschitz Functions on Metric Spaces

For a metric space X, we study the space D∞(X) of bounded functions on X whose infinitesimal Lipschitz constant is uniformly bounded. D ∞(X) is compared with the space LIP∞(X) of bounded Lipschitz functions on X, in terms of different properties regarding the geometry of X. We also obtain a Banach-Stone theorem in this context. In the case of a metric measure space, we also compare D∞(X) with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matemática Iberoamericana

سال: 2009

ISSN: 0213-2230

DOI: 10.4171/rmi/574